L’aiguille de Buffon est une expérience de probabilité proposée en 1733 par Georges-Louis Leclerc de Buffon, un scientifique français du 18e siècle.
Cette expérience fournit une approximation du nombre π.
On peut légitimement se demander, comment le nombre pi intervient là-dedans, en fait la réponse réside dans les probabilités.
En prenant des lattes de largeur fixée (disons 1) et une aiguille de même longueur (donc 1 aussi), après quelques calculs assez simples, on trouve que la probabilité qu’une aiguille soit sur 2 lattes à la fois est de 2/pi !
On peut donc lancer de façon aléatoire, un grand nombre de fois une aiguille, compter le nombre de fois où l’aiguille coupe 2 lattes, et ensuite diviser le nombre total de lancers par le nombre précédemment calculé, ce nombre est à peu près égale à 2/pi, une simple opération arithmétique permet donc d’obtenir notre approximation de pi.
La chaine Math&Magique explique de façon très claire et très complète pourquoi cette probabilité est égale à 2/pi,
Contrairement à lui, je fais l’expérience de façon informatique, ce qui me permet de faire un grand nombre de simulations et de gagner en précision (2 millions d’aiguilles jetées !) voir l’article ici.